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Hard and Soft-Core Equations of 
State for Simple Fluids 
IX. Soft-Core Equations of State and Loci of Cp Extremat 

JOHN STEPHENSON and RODNEY COUZENS 
Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2J I .  

Loci of C ,  extrema along isotherms are constructed for model soft-core equations of state, 
parameterized by an exponent N ( = 3 / n ,  where n is the repulsive potential exponent) and a 
softening temperature T,. Generally the loci exhibit two branches whose geometry depends on 
7; and N .  In soft-core type behaviour, a locus of C ,  maxima commences at the critical point 
and terminates on the temperature axis at a temperature TD where the second virial coefficient 
has a point of inflexion, and the second branch is located at higher pressures and temperatures. 
fn hard-core type behaviour, a locus of C, maxima commences at the critical point and turns 
into a locus of minima before crossing the fusion curve, whereas the second branch. which 
terminates at T,), is generally a locus of minima lying at high pressures and temperatures. The 
values of T,  and N at which the geometry of the loci changes is studied in detail. 

1 INTRODUCTION 

It remains in this series af papers to investigate the loci of extrema along iso- 
therms of the constant pressure specific heat C ,  for soft-core equations of 
state. In the first papers I and 11' we described the experimental situation 
for argon, and the loci of C, extrema for hard-core equations of state. In 
every case examined the locus of C, maxima commenced at the critical point, 
proceeded along a line almost coincident with the critical isochore, then 
(except for van der Waals' equation) turned into a locus of minima and term- 
inated on the fusion curve. On the other hand, Rowlinson2 has suggested 
that the locus of C ,  maxima would terminate on the temperature axis, see 
I, Figure 1 .  The analysis of soft-core equations of state in this paper will reveal 

t Work supported in part by the Natural Sciences and Engineering Research Council of 
Canada, Grant No. A6595. 
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168 .I. STEPHENSON AND R. COUZENS 

FIGURE 1 Loci of extrema of p"- ' ( a T / d p ) r ,  m = 1, 2, 3, along isobars for the soft-core 
Frisch (F) model with N = and t ,  = 1. For rn = 3, these are loci of extrema of the constant 
pressure specific heat C, along isotherms. Also included are the high temperature characteristic 
curves A, A,., AP and A",  and the melting curve for argon (Ar). 

how the shape of the C ,  loci changes as the exponent n of the repulsive part 
of the intermolecular potential is varied. 

In I we discussed a set of nested loci along isobars defined by 

where the m = 2 locus corresponds to extrema of the isobaric coefficient of 
expansion along isobars, and the rn = 1 and m = 3 loci correspond to the in- 
flexion points of isobars in the T vs p and T vs V diagrams. From the thermo- 
dynamic identity 

we see that the m = 3 isobar locus in (1) is also the locus of C, extrema along 
isotherms. The right-hand side of (2) may be rewritten in terms of partial 
derivatives of the pressure with respect to density and temperature, (18) 
and I1 (25), which may be calculated from the equation of state. On sub- 
stituting a virial expansion of PV into (2) one readily finds that the locus of 
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EQUATIONS OF STATE FOR FLUIDS 169 

C, extrema terminates on the temperature axis at T D  where the second virial 
coefficient has a point of inflexion, and that the slope of this locus depends 
on the third virial coefficient. In the course of our analysis, we will examine 
the temperature dependence of the second and third virial coefficients. 

We will employ the T, - N model to soften the molecular core, as in VIII. 
When T,  = 0, the exponent N = 3/n remains as a parameter. We find that 
as N is varied (with T, = 0) the shape of the C, loci changes from the “hard- 
core” form with termination on the fusion curve, to a “soft-core’’ form 
terminating on the temperature axis at T’, as Rowlinson suggested.’ This 
change occurs at a “critical” value of N ,  which we calculate numerically 
for the F and CS models. Moreover in the “hard-core” range of N there is a 
second branch to the C, locus which also terminates on the temperature axis 
at TD. This branch proceeds towards the very high temperature and pressure 
region of the phase diagram. The manner in which this second branch ap- 
proaches the axis depends on the exponent N .  This leads to a second “criti- 
cal” value of N which we calculate and find to be independent of the precise 
form of the equation of state function C#J for the F ,  G, T, and CS models. 

When the two-parameter soft-core T,  - N model is employed with both 
the softening temperature T,  and the exponent N as variables, the general 
appearance of C, loci is qualitatively similar to the T,  = 0 case, except that 
the “critical” values of the exponent N ,  which determine the geometry of the 
loci, now depend on the softening temperature. We have traced this de- 
pendence for the F and CS models. 

Our results are essentially summarized by the figures. 
Many of the technical details and definitions related to the T, - N soft- 

core model will be found in Papers IV and VIII. In the remainder of this paper 
we often use scaled density, temperature and pressure variables d ,  t and p ,  as 
defined in VIII (3). 

2 C,, LOCI FOR THE T, - N MODEL WITH N =: 

We begin by investigating the soft-core equation of state for the Frisch 
(F)-model with N = ( n  = 12). The softening temperature t ,  may be varied 
between the hard-core limit t ,  = 00 and the extreme soft-core limit t, = 0. 
The loci of C ,  extrema for the cases t, = 1 and 0 are presented in Figures 1-4, 
where the density, temperature and pressure are scaled with respect to their 
critical values, and a logarithmic scale has been employed for temperature 
and pressure. (The hard-core limit case t, = co is in I). The characteristic 
curves A,  A T ,  AP and AV have been included, as have the isobar loci in (1) 
with m = 1 and 2. Clearly with N = t we have “soft-core’’ type behaviour as 
suggested by Rowlinson when t ,  = 0, and “hard-core” type behaviour when 
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170 J. STEPHENSON AND R. COUZENS 

FIGURE 2 As for Figure 1. 

I I I I 

t,=O 
I 

I I I 

FIGURE 3 As for Figure 1, but with f,x = 0. 
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EQUATIONS OF STATE FOR FLUIDS 171 

FIGURE 4 As for Figure 3. 

t ,  = 1, with a second branch of C, minima commencing at t D  and extending 
into the high-temperature and high-pressure part of the phase diagram. 
Note the alternation of maxima and minima along the C, loci. 

To investigate the change-over in the structure of the C, loci we repeated 
the calculations for additional values of t ,  keeping N = a. The loci so ob- 
tained are presented in Figures 5 and 6. Since each set of C, loci is indexed 
by a value of t , ,  the loci correspond to “level-lines’’ oft,. [For fixed N ,  t, is 
regarded as a function of density and temperature, defined implicitly by the 
condition (dC,/dP), = 0 via (2).] These lines exhibit a “saddle-point” 
structure, with the “saddle” occurring at a value oft, between 0.01 and 0.03. 
A more precise calculation in Section 5 places the saddle at t ,  = 0.0174, or 
t,/t, = 0.0116, with dld, = 1.78, t/t ,  = 19.4 and p lp ,  = 151. 

Furthermore the final slopes of the loci terminating at t ,  change over from 
negative for loci of maxima to positive for loci of minima. In a small range 
oft, just above the “saddle” value, on the “hard-core” side, the final slopes of 
the second branches of the loci at t D  remain negative, still corresponding to 
C, maxima. The second branches in this region extend out into the phase 
diagram and then double back towards higher temperatures and pressures. 
But at higher values oft, the final slopes at t ,  become positive, so the second 
branches then correspond entirely to minima of C,, and proceed directly 
into the high temperature region. This change in the sign of the final slope 
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I72 J.  STEPHENSON AND R. COUZENS 

FIGURE 5 
0.01,0.0316 . . _ .  0.1, 0.316 ..., 1.0and 10.0. (lo ' /* = 3.16 ...) 

LOCI of C, extrema for the soft-core Frisch (F) model with N = $ and t,$ = 0.0, 

FIGURE 6 As for Figure 5 .  
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EQUATIONS OF STATE FOR FLUIDS I73 

produces another geometrical modification in the shapes of the loci, and 
occurs for t ,  = 1.72, or t,/t, = 2.55, when N = i. 

The two types of alteration in the geometrical appearance of the loci, 
related to the “saddle” and the “final slope,” occurred here for a fixed value 
of N ,  at special values oft,. An alternative way of viewing this problem is to 
regard t ,  as fixed, and N as the adjustable parameter: an approach we will 
pursue in the next section. 

3 C,, LOCI FOR THE 7 , - N  MODEL WITH T , = O  

In this limiting case of the T, - N model with T,  = 0, the exponent N remains 
as the only parameter. Noting the technical details in VIII, we again calcula- 
ted loci of C ,  extrema for selected values of N :  A, $, &, *, 0.2105,0.22,0.24 and 
$. These loci are presented in Figures 7 and 8. Clearly the saddle-point struc- 
described in Section 2 is still present, and the signs of the final slopes at t D  
determine whether the loci there correspond to maxima or minima of C,. 
The alternation between maxima and minima takes place as before. Detailed 
calculation shows that the saddle-point now occurs when N = 0.2105008, 

FIGURE 7 

distinguish in the diagram. 

Loci of C ,  extrema for the soft-core Frisch (F) model with t ,  = 0, and N = &, 4, 
I I  6 ,  5 ,  0.2105,0.22,0.24 and a. The lower portions of the loci for N = 0.24 and $ are too close to 
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174 J. STEPHENSON AND R. COUZENS 

FIGURE 8 As for Figure 7 

at dJd ,  = 1.7209, t / t ,  = 23.301, p/p, = 169.38, and the change in the sign 
of the final slope at t D  occurs when N = 0.157389876. 

It is clear that a smooth increase in the value oft, will induce a systematic 
shift in the position of the saddle point, and the value of N at which it occurs. 
There will be a similar variation in the value of N at which the final slope 
at t ,  changes sign. We trace this behaviour in the next two sections. 

4 C,, LOCI IN THE VICINITY OF THE TEMPERATURE AXIS 

In order to investigate the behaviour of C, loci in the vicinity of To at the 
temperature axis, we may employ the virial expansion of PV in powers of 
pressure : 

PI/ = RT + B’P + C‘P’ + (3) 

The primed “pressure” virial coefficients are related algebraically to the 
usual “density” virial coefficients in the expansion of 

PV B C  
2 -  ~ = 1 + --+ - + .... 

RT v 2  v 3  
(4) 
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EQUATIONS OF STATE FOR FLUIDS 175 

The inter-relations between the second and third virial coefficients are 

(C - B2) 
RT 

B' = B, C' = ( 5 )  

One finds on substitution of (3) in (2) that the locus of C, extrema near the 
temperature axis has the form 

(6 )  
where . denotes temperature differentiation. It is clear that the locus of C, 
extrema will terminate on the temperature axis where B = 0 and the second 
virial coefficient has a point of inflexion. This condition locates TD(I1, IV). 
Also the final slope of this locus on the P vs T diagram is then 

B' + c p  + ... = 0, 

B 
($$o = - c, (7) 

where the right-hand side is evaluated at To. Clearly 3 0 accordingly as 
T 2 TD and B > 0 near TD. The sign of the final slope will therefore depend 
on the sign of C at TD. Accordingly we are led to investigate the temperature 
dependence of the third pressure virial coefficient C', which is related to the 
usual second and third virial coefficients as in (5).  

For the hard-core equation of state models F ,  G, T and CS, which agree 
precisely with the first two exact hard-sphere expansion coefficients (I), 

B = ,,(I - t), and 

whence the third pressure virial coefficient is 

C = ib;, 

(where the subscript refers to the hard-core case). Even in the hard-core 
case C' has an interesting temperature dependence, Figure 9. Co is negative 
at high temperatures, and obviously has two zeros, one maximum, one 
minimum and two points of inflexion, Table I. 

TABLE I 

Feature t 

0.558 
4.115 

Zeros 

Maximum 0.812 
Minimum 9.855 

1.072 
14.928 Inflexion 
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- - 

2 -  - 
- - 

I -  0.02- 

- 
0 .  

- 

0.0 0.6 LO log,,t -I 

FIGURE 9 Third and fourth “pressure” virial coefficients C’ and D’ for the hard-sphere 
model. Note the magnified vertical scale for the right-hand portion of the figure. 

It is the inflexion point at the higher temperature which is important for 
determining when C vanishes in (7). In the hard-core limit t D  is infinite. 

In the soft-core viriai coefficients we set 

to obtain 

whence the third pressure virial coefficient becomes 

It is elementary to derive C’ and C .  To obtain the “critical” value of N for 
which the slope of the C,  locus changes sign at t , ,  we have to determine 
pairs of values of t ,  and N for which C vanishes at t,, where t D  is given im- 
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EQUATIONS OF STATE FOR FLUIDS Ill 

plicitly by (IV (28e)) 

As the core is softened, t D  decreases steadily, and eventually meets the higher 
temperature inflexion point of C’. When t, is finite, the temperature at which 
C vanishes also varies with N. Instead of fixing t ,  and calculating N ,  we 
have preferred to select N at some value of interest (e.g. $) and to solve C =  0 
and (1 3) simultaneously for t, and t , .  The corresponding “critical” values 
oft, and N are listed with additional data in Table 11, and graphed in Figure 
10. Observe that the ratio t& decreases steadily and quite slowly as N 
increases. The results are model independent to the extent that (12) and 
(13) involve only t,, tD and N. The choice of model becomes relevant only 
when the critical temperature tc is used to scale the temperatures, VIII (10). 

When t, = 0, the critical value of N is 0.157389876, and is the same for 
the F ,  G, T and CS models since these have identical coefficients of x and x2 
in the expansion of $(x). It is easy to show that for small t, 

and 

TABLE I1 
Corresponding “critical” values of t ,  and N 
at which (? = Oand the slope of the C, locus at 
t ,  changes sign. Also tabulated are corres- 
ponding values of t D  and the ratio tD/t ,  for the 
soft-core F-model 

0.157 . . . 
0.19 
0.20 
0.2 1 
0.23 
0.24 
0.25 
0.28 
0.30 
0.333 . . . 
0.4 
0.5 

0 03 

7.92E-3 72.846 
0.0367 58.654 
0.1159 49.854 
0.5846 39.520 
1.0534 36.226 
1.7171 33.642 
4.930 28.41 1 
7.936 26.141 

13.755 23.495 
24.860 20.357 
34.47 1 17.888 

54.960 
52.97 1 
52.425 
51.906 
50.936 
50.483 
50.050 
48.850 
48.125 
47.027 
45.160 
42.941 
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- 
- 
- 
- 
- 

- -0.0001 
I I I I I I I I 

0.1 0.5 N LO 
FIGURE 10 Corresponding values of t&and N for the soft-core Frisch (F) model, at which 
the slope of the C ,  locus changes sign at t,(C’ = 0), and at which the saddle-point occurs. 

Consequently C vanishes at t ,  when N satisfies the cubic equation 

8 N 3  8NZ - 18N + 3 = 0, (16) 

which has roots at - 1.178731, 0.157390, 2.021341. The critical value of N 
equals the positive root in the range 0 < N < 1. 

5 THE SADDLE-POINT 

The “saddle”-like geometry of the loci of C, extrema was remarked on in 
Section 2, and in Section 3 for the case T, = 0. In this section we trace the 
trajectory of the saddle-point across the phase diagram. For a fixed value of 
T,, the saddle-point will correspond to a specific value of N .  The saddle-point 
first occurs at T,  = 0 when N = 0.2105008. This special case is considered 
separately. For non-zero T,, it is more convenient to fix N(>0.2105) and 
to vary T,. The C, loci are then level-lines of T,  regarded as a function of 
density and temperature, defined implicitly through 
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EQUATIONS OF STATE FOR FLUIDS 179 

where f is essentially the right-hand side of (1) or I(25) with m = 3: 

(18) 

Along a C,  locus, T, is a function of p and T for fixed N .  Consequently along 
this locus 

f ( p ,  T, 'UP, T) ,  N) = 0, (19) 

The saddle-point conditions are 

so the problem reduces to solving 

simultaneously for p and T, with T,  given implicitly as a function of p and T 

[The required partial derivatives in (18) are tabulated in VIII (14). Since 
f in (18) is homogeneous in P, p and T, the extra temperature factors in- 
volving d and t (outside the square bracket terms) in VIII (14) may be can- 
celled out leaving a reduced form offdepending only on x and t. It is con- 
venient to change variables from p and T via x and t to x and w, where 

by (19). 

so 

t2b 
u2 = - = W ( ~ W  + N + I), 

b 
and 

1 ( N )("-+ww)ll" 
t ,  N + w  u o = -  __ - 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



180 J.  STEPHENSON AND R. COUZENS 

The transformation from p and T to x and w is non-singular so (17) becomes 

f(x, w; t,, N )  = 0 (25) 

and the saddle-point conditions are now 

Inspection of the manner in which the partial derivatives enter f in (25) 
and (18) reveals that t ,  occurs only via uo in (ap/ap) and (d2p/ap2), and con- 
sequently (25) is actually a quadratic equation for uo in terms of x and w. 
So uo, and hence t,, may be expressed explicitly in terms of x and w, and the 
result substituted in (26). For a chosen exponent N we then solved the saddle- 
point conditions (26) iteratively, by a Newton-Raphson method for two 

1 

I 

I I 1 I I 

FIGURE 11 
by their critical values) for the soft-core Frisch (F) model. 

N dependence of the saddle-point values of the density and temperature (scaled 
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variables, to obtain corresponding values of x and w. Thence uo is obtained 
from the solution (via the quadratic equation) of (25), and t ,  from (24b). 
The scaled temperature t can then be extracted from w via (23), and the 
density follows from d = xtuo .] 

The solutions for the position of the saddle-point are presented graphically 
in Figures 10-12, which show matching values oft, and N ,  and the variation 
of the density, temperature and pressure along the saddle-point trajectory. 
Soft-core type behaviour occurs in a region below the graph in the t ,  vs. N 
diagram, Figure 10. The saddle-point has a well-defined starting point when 
t ,  = 0 at N = 0.2105, Section 3. As t ,  increases from zero, and the correspond- 
ing value of N increases too, the saddle-point moves steadily towards lower 
temperatures and pressures whereas the density at first increases to about 
1 . 8 5 8 ~ ~  at N 5 0.355, n = 8.45. Only values of N less than unity are meaning- 
ful in the t ,  - N model. In the range 3 I N I 1, t ,  = lot, and for the t ,  - N 
model near this parameter value the saddle-point occurs moderately close 
to the critical point: p < 1.8pc, t < 7t,  and p < 60pc. The F and CS models 
behave in a similar manner. 

The special case when 1, = 0 has to be treated separately since now t, 
is fixed, and it is necessary to compute the value of N at the saddle-point. 

181 

FIGURE 12 Trajectories of the saddle-point in the density versus temperature (left-hand 
scale) and pressure versus temperature (right-hand scale) phase diagrams, for the soft-core 
Frisch (F) model. 
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I82 J. STEPHENSON AND R. COUZENS 

The structure of the partial derivative expressions in VIII (14) is maintained, 
with 

u1 -+ - N ,  lJ2 --* N ( N  + l), (27) 
but we introduce an alternative temperature variable 

( t c / t > ’  - v = lim uo = -. 

The functionfnow involves x, v and N ,  so along the C, locus (17) 

f ( x ,  v ;  N )  = 0, (29) 
and the saddle point conditions become 

Now N is defined as a function of x and v through (29). The newfturns out 
to be a quadratic in N ,  so N can be expressed explicitly in terms of x and v, 
and the result substituted in (30). The saddle-point conditions (30) are solved 
iteratively for corresponding values of x and v,  whence N is obtained from the 
solution (via the quadratic equation) of (29), and t / tc  from (28). The choice 
of model, F or CS, determines tcO,  the hard-core limit (scaled) critical tem- 
perature. The density ratio d/d ,  follows immediately from VIII (18): d /d ,  = 

(X/Xc)(t/tc)N. 

6 CONCLUDING REMARKS 

The calculations reported in this paper have been performed for a class of 
soft-core equations of state constructed by substituting a somewhat ar- 
bitrary form of soft molecular core into a class of approximate hard-core 
equations of state which incorporate an additional van der Waals type 
attractive term. The question arises as to whether the qualitative behaviour 
revealed for these models carries over, first, to equations of state constructed 
by the methods of statistical mechanics from more realistic intermolecular 
potentials, and, second, to the observed properties of real fluid systems. 
The first of these problems is addressed in the next (X, final) paper of this 
series. 
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EQUATIONS OF STATE FOR FLUIDS 183 

Note added in Proof (after Eqn. (16)). 

The cubic Eq. in (16) can be generalized for the M-N model, in which case 
the second and third virial coefficients take the form 

where A = Sf8 above. Then c’ vanishes at tD when N satisfies 

( N  + 1) 1 - - - A(2N + 1) = 0. [ (:Ill 
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